Soal dan Pembahasan Dilatasi (Perkalian) dengan Matriks
Monday, 2 July 2018
Dengan demikian dapat dikatakan bahwa suatu dilatasi ditentukan oleh:
1. Faktor skala (k), dan
2. Pusat dilatasi.
Jika yang didilatasikan suatu bangun, maka dilatasi akan mengubah ukuran tanpa mengubah bentuk bangun tersebut. Dilatasiyang berpusat di P dengan faktor skala k dinotasikan dengan [P,k].
Berdasarkan nilai dari faktor skala k, bangun bayangan yang diperoleh dapat ditetapkan sebagai berikut:
2. Jika 0 < k < 1, bangun bayangan diperkecil dan terletak sepihak terhadap pusat dilatasi dan bangun semula.
3. Jika -1 < k < 0, bangun bayangan diperkecil dan terletak tidak sepihak terhadap pusat dilatasi dan bangun semula.
4. Jika k < -1, bangun bayangan diperbesar dan terletak tidak sepihak terhadap pusat dilatasi dan bangun semula.
1. Dilatasi Terhadap Titik Pusat O(0,0)
Jika titik P(x,y) didilatasikan terhadap titik pusat O(0,0) dengan faktor skala k, maka bayangannya adalah P'(x',y') dengan
x' = kx dan y' =ky.
Secara pemetaan dapat ditulis:
[O,k] : P(x,y) => P'(kx , ky)
Dengan persamaan matriks pemetaan di atas dapat ditulis:
$\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}k&0\\0&k\end{pmatrix}.\begin{pmatrix}x\\y
\end{pmatrix}$
\end{pmatrix}$
Matriks $\begin{pmatrix}k&0\\0&k\end{pmatrix}$ dinamakan matriks yang bersesuaian dengan dilatasi [O,k].
Baca Juga: Soal dan Pembahasan Translasi || Refleksi
Soal dan Pembahasan ❶
Tentukanla bayangan titik P(-6,3) oleh dilatasi terhadap titik pusat O(0,0) dengan faktor skala -1/2 .
Pembahasan:
Dengan demikian, x' = 3 dan y' = -3/2.
Jadi, bayangan titik P(-6,3) oleh dilatasi terhadap titik pusat O(0,0) dengan faktor skala -1/2 adalah P'(3 , -3/2).
2. Dilatasi Terhadap Titik Pusat A(a,b)
Jika titik P(x,y) didilatasikan terhadap titik pusat A(a,b) dengan faktor skala k, maka bayangannya adalah P'(x',y') dengan
Baca Juga: Soal dan Pembahasan Rotasi (Perputaran)
Demikian postingan "Soal dan Pembahasan Dilatasi (Perkalian) dengan Matriks" ini, mudah-mudahan dapat mempermudah anda menyelesaikan soal-soal yang berkaitan dengan dilatasi (perkalian).
2. Dilatasi Terhadap Titik Pusat A(a,b)
Jika titik P(x,y) didilatasikan terhadap titik pusat A(a,b) dengan faktor skala k, maka bayangannya adalah P'(x',y') dengan
x' - a = k(x - a) dan y' - b = k(y - b)
Dengan persamaan matriks, hubungan di atas dapat ditulis:
$\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}k&0\\0&k\end{pmatrix}.\begin{pmatrix}x-a\\y-b\end{pmatrix}+\begin{pmatrix}a\\b\end{pmatrix}$
Baca Juga: Soal dan Pembahasan Rotasi (Perputaran)
Soal dan Pembahasan ❷
Tentukanlah bayangan titik P(2,-1) oleh dilatasi terhadap titik pusat A(3,4) dengan faktor skala -3.
Pembahasan:
$\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}k&0\\0&k\end{pmatrix}.\begin{pmatrix}x-a\\y-b\end{pmatrix}+\begin{pmatrix}a\\b\end{pmatrix}$
⟺ $\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}-3&0\\0&-3\end{pmatrix}.\begin{pmatrix}2-3\\-1-4\end{pmatrix}+\begin{pmatrix}3\\4\end{pmatrix}$
⟺ $\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}-3&0\\0&-3\end{pmatrix}.\begin{pmatrix}-1\\-5
\end{pmatrix}+\begin{pmatrix}3\\4\end{pmatrix}$
\end{pmatrix}+\begin{pmatrix}3\\4\end{pmatrix}$
⟺ $\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}3\\15\end{pmatrix}+\begin{pmatrix}3\\4\end{pmatrix}$
⟺ $\begin{pmatrix}x'\\y'\end{pmatrix}=\begin{pmatrix}6\\19\end{pmatrix}$
Dengan demikian x' = 6 dan y' = 19.
Jadi, bayangan titik P(2,-1) oleh dilatasi terhadap titik pusat A(3,4) adalah P'(6,19).
Demikian postingan "Soal dan Pembahasan Dilatasi (Perkalian) dengan Matriks" ini, mudah-mudahan dapat mempermudah anda menyelesaikan soal-soal yang berkaitan dengan dilatasi (perkalian).